JOHANNES KEPLER
JOHANNES KEPLER
Finalmente, utilizó la fórmula de la elipse, una rara figura descrita por Apolonio de Pérgamo en una de las obras salvadas de la destrucción de la biblioteca de Alejandría. Descubrió que encajaba perfectamente en las mediciones de Tycho.
Figura clave en la revolución científica. |
Johannes Kepler figura clave en la revolución científica, fue un astrónomo y matemático alemán; conocido fundamentalmente por sus leyes sobre el movimiento de los planetas en su órbita alrededor del Sol. Fue colaborador de Tycho Brahe, a quien sustituyó como matemático imperial de Rodolfo II. Nació en Weil der Stadt, el 27 de diciembre del año 1571- muere en Ratisbona, el 15 de noviembre del año 1630.
Kepler, se crió en el seno de una familia protestante luterana que vivía en la ciudad de Weil der Stad en Baden-Wurtemberg, Alemania. Su abuelo había sido alcalde de su ciudad natal, pero cuando nació Johannes, la familia se encontraba en decadencia. Su padre, Heinrich Kepler, era mercenario en el ejército del duque de Wurtemberg y, siempre en campaña, raramente, estaba presente en su domicilio. Su madre, Katherina Guldenmann llevaba una casa de huéspedes, era curandera y herborista, y más tarde fue acusada de brujería.
Kepler, nacido prematuramente a los siete meses de embarazo, era hipocondríaco de naturaleza endeble y sufrió toda su vida una salud frágil. A la edad de tres años, contrajo viruela, lo que, entre otras secuelas, debilitaría severamente su vista. A pesar de su salud, fue un niño brillante al que le gustaba impresionar viajeros en la hospedería de su madre con sus fenomenales facultades matemáticas.
Heinrich Kepler tuvo, además, otros tres hijos: Margarette, de la que Kepler se sentía muy próximo, Christopher, que le fue siempre antipático, y Heinrich. De 1574 a 1576, vivió con Heinrich —quien era epiléptico— en casa de sus abuelos mientras que su padre estaba en una campaña y su madre había ido en su búsqueda.
Al regresar sus padres, Kepler se trasladó a Leonberg y entró en la escuela latina en 1577. Sus padres le despertaron el interés por la astronomía. Con cinco años, observó el cometa de 1577, comentando que su madre lo llevó a un lugar alto para verlo. Su padre le mostró a la edad de nueve años el eclipse de luna del 31 de enero de 1580, recordando que la Luna aparecía bastante roja. Kepler estudió más tarde el fenómeno y lo explicó en una de sus obras de óptica. Su padre partió de nuevo para la guerra en 1589, desapareciendo para siempre.
Kepler terminó su primer ciclo de tres años en 1583 con retraso, debido a su empleo como jornalero agrícola, entre nueve y once años. En 1584, entró en el Seminario protestante de Adelberg y dos años más tarde, en el Seminario superior de Maulbronn.
Obtuvo allí el diploma de fin de estudios y se matriculó en 1589 en la universidad de Tubinga. Comenzó primero a estudiar ética, dialéctica, retórica, griego, hebreo, astronomía y física, y más tarde teología y ciencias humanas. Continuó con sus estudios después de obtener la maestría en 1591. Su profesor de matemáticas, el astrónomo Michael Maestlin, le enseñó el sistema heliocéntrico de Copérnico que se reservaba a los mejores estudiantes. Los otros estudiantes tomaban como cierto el sistema geocéntrico de Ptolomeo, que afirmaba que la Tierra estaba inmóvil y ocupaba el centro del Universo, y que el Sol, la Luna, los planetas y las estrellas giraban a su alrededor. Kepler se hizo así un copernicano convencido y mantuvo una relación muy estrecha con Maestlin; no vaciló en pedirle ayuda o consejo para sus trabajos.
Mientras Kepler planeaba hacerse pastor luterano, la escuela protestante de Graz buscaba a un profesor de matemáticas. Abandonó entonces los estudios de Teología para tomar el puesto y dejó Tubinga en 1594. En Graz, publicó almanaques con predicciones astrológicas –que él escribía– aunque negaba algunos de sus preceptos. En la época, la distinción entre ciencia y creencia no estaba establecida todavía claramente, y el movimiento de los astros, todavía bastante desconocido, se consideraba gobernado por leyes divinas.
En 1615, su madre, entonces a la edad de 68 años, fue acusada de brujería. Kepler, persuadido de su inocencia, pasó seis años trabajando en su defensa ante los tribunales y escribiendo numerosos alegatos. Debió regresar dos veces a Wurtemberg. Ella pasó un año encerrada en la torre de Güglingen, a expensas de Kepler, y escapó por poco de la tortura. Finalmente, fue liberada el 28 de septiembre de 1621 pero, debilitada por los duros años de proceso y de encarcelamiento, murió seis meses más tarde.
En 1628 Kepler pasó al servicio de Albrecht von Wallenstein, en Silesia, quien le prometió, en vano, resarcirse de la deuda contraída con él por la Corona a lo largo de los años. Un mes antes de morir, víctima de la fiebre, Kepler abandonó Silesia en busca de un nuevo empleo.
Kepler murió en 1630 en Ratisbona, en Baviera, Alemania, a la edad de 58 años. En 1632, durante la guerra de los Treinta Años, el ejército sueco destruyó su tumba y se perdieron sus trabajos hasta el año 1773. Recuperados por Catalina II de Rusia, se encuentran actualmente en el Observatorio de Pulkovo en San Petersburgo, Rusia.
Las tres leyes de Kepler
De profundas creencias religiosas, le costó llegar a la conclusión de que la tierra era un planeta imperfecto, asolado por las guerras. En esa misma misiva incluyó la cita clave: "Si los planetas son lugares perfectos, ¿por qué no han de serlo las órbitas de los mismos?".
Había descubierto su primera ley, la primera ley de Kepler:
Los cuerpos celestes tienen movimientos elípticos alrededor del Sol, estando éste situado en uno de los 2 focos que contiene la elipse.
Después de ese importante salto, en donde por primera vez los hechos se anteponen a los deseos y los prejuicios sobre la naturaleza del mundo. Kepler se dedicó simplemente a observar los datos y sacar conclusiones ya sin ninguna idea preconcebida. Pasó a comprobar la velocidad del planeta a través de las órbitas llegando a la segunda ley:
Las áreas barridas por los radios de los cuerpos celestes son proporcionales al tiempo usado por aquellos en recorrer el perímetro de esas áreas.
Durante mucho tiempo, Kepler sólo pudo confirmar estas dos leyes en el resto de planetas. Aun así fue un logro espectacular, pero faltaba relacionar las trayectorias de los planetas entre sí. Tras varios años, descubrió la tercera ley e importantísima ley del movimiento planetario:
El cuadrado de los períodos de la órbita de los cuerpos celestes guarda proporción con el cubo de la distancia que hay respecto al Sol.
Esta ley, llamada también ley armónica, junto con las otras leyes, permitía ya unificar, predecir y comprender todos los movimientos de los astros.
SN 1604: La estrella de Kepler
El 17 de octubre de 1604 Kepler observó una supernova (SN 1604) en la Vía Láctea, nuestra propia Galaxia, a la que más tarde se le llamaría la estrella de Kepler. La estrella había sido observada por otros astrónomos europeos el día 9 como Brunowski en Praga (quién escribió a Kepler), Altobelli en Verona y Clavius en Roma y Capra y Marius en Padua.
Kepler inspirado por el trabajo de Tycho Brahe realizó un estudio detallado de su aparición. Su obra De Stella nova in pede Serpentarii («La nueva estrella en el pie de Ophiuchus») proporcionaba evidencias de que el Universo no era estático y sí sometido a importantes cambios. La estrella pudo ser observada a simple vista durante 18 meses después de su aparición.
La supernova se encuentra a tan solo 13 000 años luz de nosotros. Ninguna supernova posterior ha sido observada a simple vista en tiempos históricos dentro de nuestra propia galaxia. Dada la evolución del brillo de la estrella hoy en día se sospecha que se trata de una supernova de tipo I. www.wikipedia.org
Kepler inspirado por el trabajo de Tycho Brahe realizó un estudio detallado de su aparición. Su obra De Stella nova in pede Serpentarii («La nueva estrella en el pie de Ophiuchus») proporcionaba evidencias de que el Universo no era estático y sí sometido a importantes cambios. La estrella pudo ser observada a simple vista durante 18 meses después de su aparición.
La supernova se encuentra a tan solo 13 000 años luz de nosotros. Ninguna supernova posterior ha sido observada a simple vista en tiempos históricos dentro de nuestra propia galaxia. Dada la evolución del brillo de la estrella hoy en día se sospecha que se trata de una supernova de tipo I. www.wikipedia.org
Comentarios
Publicar un comentario